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Abstract

Pharmaceutical innovation depends on strong primary patents that allow origina-

tors to recoup R&D costs. However, drug companies often engage in evergreening

that prolongs patent protection by filing follow-on patents with little therapeutic gain.

We study a policy lever that works with market forces to screen out weak follow-

on patents: the Hatch-Waxman Act, which incentivizes challenges to evergreening

patents by granting the first successful challenger a period of marketing exclusivity.

We investigate how the length of first-filer exclusivity shapes generic firms’ incentives

to initiate challenges, which can curb the extra monopoly protection created by ever-

greening while preserving incentives for genuine discovery and protecting consumer

welfare through earlier generic entry. Using a two-stage structural model that endo-

genizes challenge and entry decisions, we estimate the fixed costs of generic entry

with moment inequalities. We find that the current 180-day exclusivity raises chal-

lenge rates by about 4 percentage points. Extending exclusivity primarily activates

challenges in markets that would otherwise go unchallenged: a two-year exclusivity

increases the challenge rate to 15.38%. Effective exclusivity is highly heterogeneous

across therapeutic classes: reaching a 20% challenge rate requires roughly two years

for antimicrobials but less than one year for blood products or genitourinary drugs.
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1 Introduction

Patent protection plays a central role in incentivizing innovation by granting inventors
exclusive rights for a fixed period, enabling them to recover research and development
(R&D) investments. In the pharmaceutical industry, drug development is characterized by
high R&D costs and lengthy, expensive clinical trials, making innovation particularly risky
and resource-intensive. As a result, patent protection is critical for firms to recoup their
investments. Beyond primary patents covering novel active ingredients, pharmaceutical
companies increasingly rely on secondary patents, which protect auxiliary features such as
formulations (e.g., dosage forms, routes of administration) and manufacturing processes.

Secondary patents are frequently criticized as a form of ”evergreening,” a strategy that
prolongs market exclusivity without offering significant therapeutic improvements. This
practice is widespread in the pharmaceutical industry. In 2009, the ratio of primary to sec-
ondary patents was around 1:7 (European Competition Commission (2009)). Additionally,
78% of drugs associated with new patents were existing drugs, and 70% of drugs had more
than one secondary patent (Feldman (2018)). Moreover, secondary patents defer generic
entry, restrict competition, sustain high prices, and hurt consumers. Gupta (2023) finds
that the presence of multiple patents delays generic entry by over three years per drug and
imposes an additional $25.6 billion in costs on consumers.

Addressing the consumer welfare losses caused by excessive secondary patenting is a
challenging task. One potential response is to reform patent law either by narrowing the
scope or duration of secondary patents or by enhancing the scrutiny of their validity. Legal
reform, however, is often slow, politically contentious, and vulnerable to industry lobbying.
Furthermore, international agreements such as the Agreement on Trade-Related Aspects of
Intellectual Property Rights (TRIPS)1 also constrain unilateral policy changes. A more
feasible and targeted alternative is to strengthen incentives for generic firms to challenge
weak or invalid patents in court.

Generic entry typically occurs after patent expiration, but it can happen earlier through
Paragraph IV (PIV) challenges when submitting the Abbreviated New Drug Application
(ANDA) to the United States Food and Drug Administration (FDA). To further encourage
early generic entry, the Hatch-Waxman Act of 1984 grants the first PIV challenger a 180-
day period of marketing exclusivity, during which no other ANDAs for the same drug can

1The TRIPS Agreement sets minimum standards for the protection and enforcement of intellectual prop-
erty rights among WTO member states. See in https://www.wto.org/english/docs_e/legal_
e/27-trips_01_e.htm

1

https://www.wto.org/english/docs_e/legal_e/27-trips_01_e.htm
https://www.wto.org/english/docs_e/legal_e/27-trips_01_e.htm


be approved. This exclusivity provides a temporary period during which only the brand-
name drug can share the market with this generic challenger. It offers significant financial
incentives to offset the risks and costs associated with patent litigation. This regulatory
framework, combining litigation incentives with temporary exclusivity, is intended to fa-
cilitate timely generic entry and enhance competition, all without fundamentally altering
the legal structure of pharmaceutical patenting. It plays a critical role in balancing two
competing goals: promoting pharmaceutical innovation and ensuring affordable access to
medicines.

Although the 180-day exclusivity period is intended to spur earlier generic entry, many
branded products, especially in certain classes such as respiratory, face few PIV chal-
lenges2. This paper studies how exclusivity shapes generic firms’ decisions to initiate PIV
challenges. On the benefit side, a successful first-filer can earn sizable rents during exclu-
sivity (e.g., up to $60 million3), which we frame as the exclusivity-rent effect. On the cost
and risk side, initializing a PIV challenge entails substantial fixed costs (roughly $5–$10
million4), litigation uncertainty, and the prospect that rents materialize only if the chal-
lenger both prevails and secures first-filer status. Consequently, expected profits may be
insufficient to induce entry. Moreover, stronger exclusivity incentives can attract additional
challengers, intensifying competition for first-filer status and dissipating expected rents, a
business-stealing effect that can further deter entry. The net effect of exclusivity is there-
fore theoretically ambiguous ex ante. We build structural models to quantify those forces
and exploit policy levers that operate on both margins to encourage patent challenges. One
approach is to extend the exclusivity period for drugs with few challenges, thereby broad-
ening the high-profit window5. Another approach is to reduce fixed costs by streamlining
administrative procedures and improving FDA–industry communication. To summarize,
we analyze how exclusivity duration and fixed-cost reductions jointly determine the inci-
dence of PIV challenges.

We study the U.S. prescription drug market. Our dataset covers 9,137 drug applications
and 14,437 NDCs (National Drug Codes) from 2003 to 2022. We document two patterns
from the data. First, average PIV challenge rates are low and vary markedly across ther-
apeutic classes. For example, central nervous system, cardiovascular, and antimicrobial

2https://www.healthaffairs.org/doi/abs/10.1377/hlthaff.2022.00873
3https://www.sciencedaily.com/releases/2009/10/091015141507.htm
4https://www.sciencedaily.com/releases/2009/10/091015141507.htm
5In light of the relatively low PIV penetration and challenge rates in the U.S., some researchers have

advocated for extending exclusivity for certain drugs with limited patent challenges (source).
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drugs together account for nearly half of all ANDA submissions, yet their PIV challenge
rates fall below the overall average. By contrast, classes such as blood products, antipara-
sitics, and antidotes attract far fewer applications but exhibit substantially higher challenge
rates. Second, generics associated with PIV challenges enter the market, on average, seven
years earlier than those without challenges, suggesting that patent challenges substantially
accelerate the entry of generics.

To investigate the role of exclusivity and the scope for policies that encourage PIV en-
try, we construct a structural model to back out the fixed costs of challenge and simulate
counterfactual policies. The model has two stages. In the first stage, each generic firm
selects one of three strategies: (1) not developing and not entering the market; (2) investing
in PIV generic development; or (3) investing in non-PIV generic development. All generic
firms incur reverse engineering costs to develop bioequivalent products. PIV challengers
incur additional legal and technical costs to design around or invalidate the patent and face
litigation uncertainty. Firms that invest without targeting a PIV challenge become regu-
lar generic entrants and enter the market only after patent expiration. Firms that pursue a
PIV challenge initiate litigation against the brand-name manufacturer. The outcome of the
challenge is uncertain and depends on the strength of the underlying patent. Generic firms
form rational expectations over litigation outcomes, future market structure, and competi-
tors’ pricing behavior. They make entry decisions by comparing the expected net present
value of profits to fixed costs. Each firm selects the strategy that yields the highest expected
surplus.

In the second stage, firms compete in prices to maximize their product-level profits. On
the demand side, we employ a nested logit model, which allows for different substitution
patterns between branded drugs and generics, and captures consumers’ higher willingness
to pay for branded products and inertia in switching to later generic entrants. Using the
demand estimates, we recover marginal costs and simulate firm-level profits under differ-
ent market structures. Firms’ entry decisions are modeled by comparing these predicted
profits against fixed costs, which are specified as a linear function of observables and an
unobservable cost shock. 6

We identify the parameters of the fixed cost function using inequality restrictions de-
rived from Nash equilibrium conditions. Observed entry choices reveal profit orderings

6Branded-drug firms may compensate generic firms to delay market entry, a practice known as pay-for-
delay or reverse payments. We do not have access to relevant data on this issue and therefore abstract from it
in this paper. Drake and McGuire (2025) provides an analysis of reverse payments.
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across strategies, generating moment inequalities that we exploit in estimation. Because
these restrictions need not deliver point identification, inference explicitly accommodates
partial identification.

Our estimates suggest that the average profit from 180-day exclusivity is $5.7 mil-
lion, while the average fixed costs of patent challenge are $6.04 million, approximately
$2.1 million higher than the fixed costs of regular (non-PIV) generics. This helps explain
low challenge rates. Moreover, we evaluate the importance of exclusivity and alternative
policies with larger exclusivity rent and smaller fixed costs of challenge. A 180-day ex-
clusivity substantially increases the PIV challenge rate to 14.37% compared with 10.27%
in the absence of exclusivity. In addition, longer exclusivity periods provoke patent chal-
lenges noticeably in previously unchallenged groups, with a 2-year exclusivity leading to
a challenge rate of 15.38%. Reducing fixed costs can produce a similar effect: a 10% cost
reduction is equivalent to 1.5-year exclusivity. Additionally, the required exclusivity peri-
ods for a significant increase in challenge rate vary across therapeutic classes. For instance,
2-year exclusivity leads to a 20% challenge rate for antimicrobials, whereas blood prod-
ucts or genitourinary drugs would require less than one year. Taken together, our findings
show that finely tuned first-filer exclusivity, a market-based incentive embedded in the ex-
isting regulatory framework, can curb evergreening, accelerate generic entry, and enhance
consumer welfare without weakening core rewards for true pharmaceutical innovation.

Related Literature This paper speaks to the economics of innovation and intellectual
property. Pharmaceutical R&D is costly and lengthy, with per-molecule estimates ranging
from $1 billion to $3 billion (Schlander et al. (2021)). Patents play a central role by securing
returns for innovators, but they also confer temporary monopoly power that delays generic
competition. Beyond initial patents, branded manufacturers often accumulate additional
patents to extend effective exclusivity, a strategy known as “evergreening”, which allows
them to sustain higher profits. Empirical studies document the prevalence of such patent
accumulation, and show that it delays generic entry and harms consumers (Feldman (2018)
and Gupta (2023)).

Working on patent protection design in this setting, we address an important policy
question: how can policymakers incentivize earlier entry of low-cost generics while pre-
serving rewards for true pharmaceutical innovation? One approach is to expand finan-
cial incentives to drug companies. Policies designed to extend profitable windows for
drugs, such as priority review and transferable exclusivity extensions, illustrate this strat-
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egy. For instance,Ridley et al. (2006) propose Priority Review Vouchers for neglected
diseases, which shorten FDA review times by roughly one year and accelerate access to
drugs. Dubois et al. (2022b) analyze transferable patent-extension vouchers that grant ad-
ditional exclusivity and study implications for R&D incentives and social welfare. While
these studies primarily focus on the entry of branded drugs, our focus is on generic en-
try. Patent challenges enable successful generic firms to enter the market before patent
expiration. Moreover, under the Hatch-Waxman Act, the first successful PIV filer receives
180-day marketing exclusivity, a mechanism similar to a targeted voucher for challenging
weak patents. A growing empirical literature shows that patent challenges and exclusiv-
ity incentives disproportionately target the highest-sales drugs, lower-quality patents, and
later-expiring patents (Grabowski and Kyle, 2007; Hemphill and Sampat, 2011; Panattoni,
2011; Hemphill and Sampat, 2012; Grabowski et al., 2017). Branstetter et al. (2016) uses a
Nested Logit model to quantify the welfare gains of around $78 billion from PIV-facilitated
generic entry by comparing the scenarios with and without PIV-facilitated generic drugs,
which provides an upper bound on the potential welfare gain from patent challenges. We
build on this line of work by explicitly modeling firms’ entry and challenge decisions, in-
vestigating how the length of exclusivity influences generic challenge behavior.

Methodologically, this paper is related to the literature on endogenous entry in differentiated-
product markets (Bresnahan and Reiss, 1991; Mazzeo, 2002; Seim, 2006; Wollmann, 2018;
Alam and Conti, 2024; Starc and Wollmann, 2025). This framework enables us to estimate
fixed costs of entry and perform counterfactual policy analysis. Among these papers, Starc
and Wollmann (2025) is most closely related and study entry in the U.S. pharmaceutical
industry within the context of collusion. We extend their model and derive new moment in-
equalities to quantify the additional entry costs associated with PIV challenges and analyze
a different question: how the length of exclusivity shapes generics’ entry decisions.

Finally, this paper relates to the literature on limiting prescription drug prices. Håkonsen
et al. (2009) assesses different price control policies and Dubois et al. (2022a) evaluates the
effects of an international reference pricing policy on U.S. drug prices. Rather than im-
posing price ceilings, we propose to vary the length of the first-filer exclusivity to induce
patent challenges and earlier generic entry, which can lower prices through competitive
forces without direct price regulation.

The rest of the paper is organized as follows. Section 2 presents the data and empirical
evidence. Section 3 describes the structural model and estimation. Section 5 conducts
counterfactual policy analyses, and section 6 concludes.
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2 Data and empirical evidence

2.1 Industry background

The U.S. prescription drug market is large and growing. In 2023, its value was approxi-
mately $602 billion, an increase of over 30% relative to six years earlier. Per capita drug
expenditure in the U.S. is about twice that of leading European countries. Concerns about
high prices for branded therapies have, in turn, motivated policies that accelerate generic
entry.

To enter the pharmaceutical market, manufacturers must submit an application to the
FDA. Brand-name drugs file a New Drug Application (NDA), while generic drugs are
submitted through an Abbreviated New Drug Application (ANDA). The FDA grants ap-
proval if the application demonstrates safety and efficacy, and there are no unresolved legal
issues. Once approved, the drug is marketed under one or more National Drug Codes
(NDCs), which identify specific products by their ingredients, dosage form, strength, and
packaging. A single application may correspond to multiple NDCs.

The regulatory framework governing generic entry is the Hatch-Waxman Act. Generic
manufacturers seeking approval file an ANDA to demonstrate pharmaceutical equivalence
and bioequivalence of their products to the reference listed drug (RLD)7. For each patent
listed for the RLD by the FDA, the ANDA must include one of four certifications:

1. Paragraph I Certification: No relevant patent exists or has been filed.

2. Paragraph II Certification: The patent has already expired.

3. Paragraph III Certification: The generic will not enter the market until after patent
expiration.

4. Paragraph IV Certification: The patent is invalid, unenforceable, or will not be in-
fringed by the generic product.

Although generic entry typically occurs after patent expiration, it can happen earlier
through Paragraph IV (PIV) challenges when submitting the ANDA to the FDA. This le-
gal pathway requires generic manufacturers to invest not only in reverse engineering and
development to show that the patents are invalid or not infringed, but also in litigation to
defend their claims. For example, Cephalon’s branded drug Provigil was protected by a

7See the FDA Glossary of Terms for details.
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primary patent on the active ingredient, modafinil, which expired in 2010, as well as three
secondary patents that extended protection in the U.S. until 2024. Several generic manu-
facturers, including Teva, Mylan, Ranbaxy, Barr, and Apotex, challenged these secondary
patents. The secondary patent covering particle size8 was invalidated in 2011, while the
other two formulation-related patents were circumvented by generic firms through alter-
native drug designs. As a result, generic versions of Provigil entered the U.S. market in
2012.

A Paragraph IV certification (PIV) triggers a sequence of events. The generic applicant
must notify the brand-name manufacturer and the patent holder, who then have 45 days to
initiate an infringement lawsuit. If litigation is initiated within that window, the FDA is
barred from granting final approval for up to 30 months, unless the case is resolved earlier
or the generic challenger prevails. If no suit is filed within 45 days, the FDA may approve
the ANDA immediately.

Hatch–Waxman also creates a specific entry incentive: the first applicant to file a com-
plete ANDA with an approved PIV certification is eligible for 180 days of marketing exclu-
sivity. During this exclusivity period, additional generic competitors referencing the same
RLD are excluded from the market. Olson and Wendling (2018) documents that the initial
PIV entry leads to substantial drug price reductions, with further decreases as subsequent
generic products enter. These institutional features, specifically the 180-day first-filer ex-
clusivity, create policy-driven returns to early challenge and structure the strategic entry
problem that we analyze in the remainder of the paper.

2.2 Data

We combine several datasets for our analysis. The primary source is the Medicaid State
Drug Utilization Data (SDUD), published by the Centers for Medicare & Medicaid Ser-
vices. This dataset provides quarterly records of the number of prescriptions and total
reimbursements at the National Drug Code (NDC) level across all U.S. states. Each NDC
uniquely identifies a product by active ingredient, dosage form, strength, and package size.
We aggregate NDCs by ingredient, dosage form, and strength to align product definitions
across sources. We measure quantities by the number of prescriptions and define prices as
the average reimbursement per prescription (total reimbursement divided by prescriptions).

8Particle size refers to the size of the solid particles of the drug substance before they are compressed into
a tablet or suspended in a solution. It affects dissolution rate, absorption, bioavailability, and stability of the
drug.
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As Medicaid primarily serves low-income beneficiaries, SDUD-based quantities likely
understate national utilization and thus firms’ total sales and profits. Unfortunately, we do
not have access to comprehensive national-level sales data (e.g., data from IQVIA). To ad-
dress this limitation, we follow the approach in Starc and Wollmann (2025), who combine
SDUD with national sales data from IQVIA and find close alignment after rescaling. We
apply their scaling factor to adjust our quantities to the national level.

We augment the SDUD with FDA sources. First, the FDA’s Orange Book9 provides de-
tailed information on each drug’s active ingredients, dosage form, strength, manufacturer,
and patent listings. Additionally, we scraped data on PIV certification status and ANDA
submission dates from FDA approval letters10.

Finally, we extract the therapeutic classes at the NDC level using public mapping code
from Kury and Bodenreider11. Our final sample covers all drugs sold between 2003 and
2022, which includes 14,437 NDCs and 9,137 application numbers, of which 1,197 have
PIV certification.12

2.3 Descriptive evidence

In this section, we present two descriptive facts from the data that frame our analysis of
PIV challenges.

Heterogeneity in challenge rates across therapeutic classes. Figure 1 presents PIV
challenge rates by 27 therapeutic classes, defined using the Veterans Affairs (VA) classi-
fication system13. We define the challenge rate as the share of generic applications in a
class with a PIV certification. The average challenge rate is low, around 15%, and varies
markedly across therapeutic classes. The central nervous system, cardiovascular, and an-
timicrobial classes together represent approximately half of all ANDAs, yet each exhibits a
below-average challenge rate. This pattern suggests that, even though these classes are at-
tractive to generic manufacturers, firms in these classes frequently choose to wait for patent

9https://www.fda.gov/drugs/development-approval-process-drugs/drug-
approvals-and-databases.

10https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm.
11Fabricio Kury and Olivier Bodenreider proposed R codes to map NDC and therapeutic class (Anatom-

ical Therapeutic Chemical (ATC) or Veterans Administration (VA) classes): https://github.com/
fabkury/ndc_map/blob/master/ndc_map.R.

12Throughout this paper, we distinguish between applications (NDA or ANDA), defined at the ingredient-
dosage form level, and products (NDC), aggregated at the ingredient-dosage form-strength level.

13See https://www.ihs.gov/RPMS/PackageDocs/PSN/psn318u2.pdf.
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expiration rather than initiate patent challenges, which incur the up-front costs and risks of
litigation. In contrast, blood products, antidotes, and antiparasitics have fewer ANDA fil-
ings but display substantially higher PIV challenge rates.

Figure 1: Challenge rate across therapeutic classes

PIV challengers enter about seven years earlier. Figure 2 compares the timing of mar-
ket entry between PIV generic drugs and regular (non-PIV) generic drugs. We measure
delay as the number of years between the branded drug’s initial marketing date and the
generic drug’s market entry. The distribution of delays differs substantially: PIV gener-
ics are concentrated at much shorter delays, whereas regular generics exhibit a wider and
later distribution. Specifically, on average, PIV generic drugs enter the market about seven
years earlier than non-challenging generics, consistent with patent challenges accelerating
the pathway to entry.

In summary, these findings emphasize the significant impact of PIV challenges in fa-
cilitating early generic competition, though the overall challenge rate is modest on average
and highly uneven across therapeutic classes. These facts motivate our structural analysis
of how exclusivity incentives and fixed costs shape challenge decisions, thereby simulating
alternative policies to encourage PIV challenge.
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Figure 2: Density of delay in start marketing date to the branded drugs

3 Model

In this section, we present a two-stage model of generic entry and price competition under
the Hatch-Waxman Act. The model captures (1) generic firms’ entry choices, including
whether to initiate a PIV challenge, and (2) subsequent Bertrand-Nash pricing competition
in differentiated product markets. We solve by backward induction: Stage II characterizes
pricing and profits for any realized market structure. Stage I maps these profits into entry
payoffs and equilibrium choices.

3.1 Stage II: Price competition

3.1.1 Demand

On the demand side, we define a market mt by the combination of an active ingredient m
and a half-year period t.14 A product d is defined at the ingredient-dosage form-strength-
firm level (i.e., the first nine digits of the NDC).15

14This half-year time definition aims to match with the 180-day (i.e., one half-year) exclusivity window.
We obtain similar results using annual periods.

15Throughout, we index firms implicitly via products d.

10



We use a Nested Logit model to estimate demand. In each market mt, a buyer i selects
a nest g ∈ {Brand,Generic}, either a branded drug or a generic drug.16 Conditional on the
nest, the buyer i chooses the drug d offering the highest indirect utility within the nest g or
the outside option of not purchasing. The indirect utility of buyer i for drug d in market mt

is

vidmt = λm + λt + α ln pdt + β11{Brand}d + β2Npackdt + β31{FirstG}d
+ ξdmt + ζigmt + (1− σ)ϵidmt

with outside utility vi0mt = ϵi0mt. λm and λt represent the ingredient and time fixed ef-
fects, respectively. ln pdt is the logarithm of the price17. To capture buyers’ specific in-
terests in branded drugs, we include a dummy variable 1{Brand}d indicating if the drug
d is branded. Npackdt measures the number of available package sizes for drug d, cap-
turing buyers’ interests for products of more flexible packaging. As the first generic en-
trants secure early market access and establish solid relationships with wholesalers, we
include a dummy variable 1{FirstG}d indicating whether the drug d is the first generic
entrant, to capture its comparative advantage over later entrants. ξdmt is the unobserved
product-specific shock, such as unobserved quality. The unobservables ξdmt, ζigmt, ϵidmt

are independently and identically distributed. The idiosyncratic shock ϵidmt follows an
i.i.d. Type-I extreme value distribution. ζigmt is a nest-specific shock and distributed such
that ζigmt + (1 − σ)ϵidmt also follows the Type-I extreme value distribution. σ ∈ (0, 1) is
the nesting parameter, which governs the degree of correlation in unobserved utility within
a group.

Let δdmt = λm + λt + α ln pdt + β11{Brand}d + β2Npackdt + β31{FirstG}d + ξdmt

denote the mean utility. Define the within-nest inclusive value considering all products d

in group g and ingredient m, i.e., d ∈ Ggmt

Dgmt =
∑

d∈Ggmt

exp

(
δdmt

1− σ

)
.

16We assume buyers in our framework are intermediaries, such as wholesalers, group purchasing organi-
zations, and large retail chains, rather than end consumers or patients. This distinction matches the structure
of the Medicaid data, in which transaction prices are based on reimbursements to these intermediaries, rather
than out-of-pocket costs or list prices paid by the patients.

17As our sample includes drugs across different ingredients and time, we use the logarithm of the price to
accommodate wide price dispersion. See, e.g., Dubois et al. (2022a) and Atal et al. (2022).
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The market share of product d in ingredient m at period t is

sdmt = s̄d|g,mt · s̄gmt =
exp

(
δdmt

1−σ

)
Dσ

gmt

[∑
g D

1−σ
gmt

]
where s̄d|g,mt is the selection probability of drug d conditional on group g in ingredient m
at period t

s̄d|g,mt =
exp

(
δdmt

1−σ

)
Dgmt

,

and s̄gmt is the unconditional probability of the group g in ingredient m at period t

s̄gmt =
D1−σ

gmt∑
g D

1−σ
gmt

.

3.1.2 Supply

On the supply side, firms set prices pdt to maximize the profits of individual drugs. Let Md

denote the potential market size for drug d of ingredient m.18. Product d’s period profit is

πdt = (pdt −mcdt) sdtMd

where mcdt is the marginal cost. We parameterize marginal costs as

ln(mcdt) = γm + γt + ωdt (1)

with ingredient and time cost fixed effects (γm, γt) and i.i.d. shocks ωdt.

3.2 Stage I: Entry

In the first stage, a generic firm has a one-time opportunity19 to make the entry decision for
an ANDA in ingredient-dosage form j20. Each ANDA applies to all strengths of the drug.

18We follow Starc and Wollmann (2025) and proxy the market size as 1.5 times the maximum observed
quantity over time for drugs of ingredient m.

19We assume once the firms complete the research, they will directly apply to the FDA to file an ANDA.
They do not strategically choose the entry timing. Moreover, we focus on whether an ANDA challenges
patents, rather than the timing of the challenge, as we believe that encouraging more challenges is of first-
order importance, given the low average challenge rate in the industry.

20Drug companies make entry decision in ingredient-dosage form j, but the price competition is in ingre-
dient m to account for the substitution across dosage forms. For example, ingredient Paracetamol has several
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Firms must choose one of three options for ingredient-dosage form j: invest in PIV generic
development, invest in non-PIV generic development, or not invest and not enter.

Each option incurs distinct fixed costs. Investing in non-PIV generic development en-
tails fixed costs to replicate the branded drug and prove the ability to produce on a large
scale, which are considered reverse-engineering costs. Those regular generics enter the
market after the patent has expired. Investment in PIV generic development involves addi-
tional costs to challenge existing patents beyond the reverse-engineering cost. For example,
if an ANDA challenges a branded drug’s formulation patent, the firm must conduct further
experiments to develop an alternative formulation and demonstrate its efficacy and safety.
Additionally, the firm incurs further application and litigation fees. If the generic firm files
a PIV ANDA, it enters before the patent expiration and may obtain a 180-day exclusivity
period upon winning the lawsuit with a certain probability. If not, the ANDA becomes a
regular generic.

After filing an ANDA, there is an uncertain duration of delay, denoted by D, during
which the FDA reviews the application, and the case is settled upon challenge. The review
process is simpler for regular generics, so we assume different distributions FD,reg for non-
PIV filings and FD,PIV for PIV filings (reflecting more complex review and litigation). Drug
exit typically results from supply disruptions outside the firm’s control. Therefore, the
model assumes that generic firms only consider entry decisions and do not plan for exit ex
ante.

Firms are assumed to know the distributions of demand shocks Fξ, marginal cost shocks
Fω, and delay durations FD,reg and FD,PIV . They form rational expectations regarding fu-
ture realizations of these random variables. Moreover, firms know the fixed effects on util-
ity (λm and λt) and on marginal costs( γm and γt). The set of drugs for an ANDA of firm
f in ingredient-dosage form j is d ∈ Dfj , specified at the ingredient-dosage form-strength
level. To characterize the market structure for an ingredient-dosage form, it is necessary
to determine the number of applications (ANDAs and NDAs) and the number of prod-
ucts (NDCs) for each application. We assume that firms can perfectly anticipate, for each
ingredient-dosage form, the maximum number of branded drug applications (NDA) NB,j ,
first PIV successful applicants NF,j , subsequent successful PIV applicants NS,j , regular
ANDAs with the same ingredient-dosage form NR,j , and ANDAs with the same ingredient

dosage forms, including tablets and suspension.
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but different dosage forms NR,−j
2122.

Regular (non-PIV) generics. The value function of a regular (non-PIV) generic ANDA
fj is a sum of its products d: 23

V R
fj(NB,j, NF,j, NS,j, NR,j, NR,−j, tallowed,j, tnR,j=NR,j

) =
∑
d∈Dfj

{ tnR,j=NR,j∑
t=tallowed,j

δt × FD,reg(t)×

NR,j−1∑
nR,j=0

NR,−j∑
nR,−j=0

ρ(NR,j − 1, nR,j, t, FD,reg)︸ ︷︷ ︸
Prob of nR,j out of NR,j − 1 in the market

× ρ(NR,−j, nR,−j, t, FD,reg)︸ ︷︷ ︸
Prob of nR,−j out of NR,−j in the market

×
∫
ξ

∫
ω

πfdt(NB,j +NF,j +NS,j + nR,j + nR,−j + 1)dFξdFω × 1{t ≥ tallowed}

+
T∑

t=tnR,j=NR,j

δt
∫
ξ

∫
ω

πfdt(NB,j +NF,j +NS,j +NR,j +NR,−j)dFξdFω × 1{t ≥ tmature}

}
.

(2)

where δ is the discount factor. The value function of a regular generic ANDA starts from
the time that it is allowed to enter (tallowed). Entry can occur at patent expiration or after
the 180-day exclusivity period if a PIV ANDA invalidates the branded drug’s patents. The
value function consists of two parts. In the first part, the market already contains branded
drugs and PIV generics, so only regular generics are now entering. Among these regular
generics, those with the same ingredient and dosage form as ANDA fj are denoted by nR,j ,
while those with the same ingredient but a different dosage form are denoted by nR,−j .
The incumbents in the market include branded drug NDAs (NB,j), as well as first PIV
applicants (NF,j), who benefit from exclusivity, and second PIV applicants (NS,j), who do
not benefit from exclusivity but can enter after it and before patent expiration. The number
of new regular generics entrants, n, can vary from 0 to the maximum number N in each

21The drugs with the same ingredient but different dosage form matter since we allow substitution cross
dosage forms in the demand model.

22In practice, brand-name firms may launch authorized generics (AGs) i.e., generic versions of their own
drugs marketed without the brand name. AGs can enter before patent expiration and are sometimes used
strategically by brand-name firms to deter generic entry. However, AG entry is relatively uncommon in our
sample, so we model it as an exogenous event rather than as part of the brand’s strategic behavior. Alam and
Conti (2024) provide a detailed analysis of AG entry.

23In this expression, we abuse the notation and only illustrate the number of applications, but the real profits
are for drugs (NDCs). We use the average number of NDCs across ingredient-dosage forms to compute the
number of NDCs for each application.
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period t. We include regular generics having the same ingredient and dosage form j, that
is nR,j ∈ [0, NR,j], and those having the same ingredient but different dosage forms, that is
nR,−j ∈ [0, NR,−j], since both sets of regular generic entrants compete in the competition
stage. The flow profit is derived from the competition stage

πdt(·) = (pdt(·)−mcdt)sdt(·)M

For each possible market structure, composed by (NB,j, nF , nS, nR,j, nR,−j) in a period
t (before maturity), we compute the flow profits as in Starc and Wollmann (2025). Firms,
knowing only the maximum number of applications, sum those flow profits weighted by the
probability ρ(·) for each possibility combination to obtain the expected profit for a period.
The probability ρ(·) follows a binomial distribution which is given by

ρ(a, b, t, FD) =
a!

(a− b)!b!
FD(t)

b[1− FD(t)]
a−b (3)

Firms obtain expected profits of a potential market composition by integrating over the
distributions of demand shock ξ and marginal cost shock ω. In the second part of the value
function, no more drugs enter, and the market is mature. Firms obtain the same flow profit
of ANDA fj afterwards24.

PIV generics. The value function of a PIV generic ANDA fj is

V PIV
fj (NB,j, NF,j, NS,j, NR,j, NR,−j, tend180,j, tendpatent,j, tnR,j=NR,j

) (4)

=
∑
d∈Dfj

T∑
t=0

δtFD,PIV (t)×
[
PWPFV

F
dt + PW (1− PF )V

S
dt + (1− PW )V Fail

dt

]
24The value functions depend on the ingredient-dosage form-specific time thresholds, such as the timing

that regular generics are allowed to enter (tallowed,j). Firms do not know these time thresholds because of
the uncertainty in the FDA review process. Therefore, their value functions need to take expectations over
timing uncertainty, considering the distribution of delay FD and all entry status scenarios across time. In each
period t, we simplify that three potential scenarios arise as the market evolves before maturity: (1) during
exclusivity, (2) subsequent PIVs enter following exclusivity, and (3) regular generics enter. The probability
of each scenario is detailed in Appendix B
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where PW denotes the probability of a successful PIV challenge (i.e, winning the lawsuit25,
and PF represents the probability of being the first challenger. These variables are central
to linking possible outcomes in the value function.

The value function consists of three components, each representing a different outcome
for the challenger. Specifically, V F

dt is the value for an applicant who is both the first to
challenge and succeeds. V S

dt reflects the value for a successful challenger who is not the
first. Finally, V Fail

dt captures the value when the challenge is unsuccessful.
The value function of being a first successful applicant V F

dt equals

V F
dt (NB,j, NF,j, NS,j, NR,j, NR,−j, tend180,j, tendpatent,j, tnR,j=NR,j

) =

NF,j−1∑
nF=0

NR,−j∑
nR,−j=0

ρ(NR,−j, nR,−j, t, FD,Reg)

× ρ(NF,j − 1, nF , t, FD,PIV )×
∫
ξ

∫
ω

πfdt(NB,j + nF + 1 + nR,−j) dFξ dFω × 1{t ≤ tend180,j}

+

NS,j∑
nS=0

NR,−j∑
nR,−j=0

ρ(NR,−j, nR,−j, t, FD,Reg)× ρ(NS,j, nS, t, FD,PIV )

×
∫
ξ

∫
ω

πfdt(NB,j +NF,j + nS + nR,−j) dFξ dFω × 1{tend180,j < t ≤ tendpatent,j}

+

NR,j∑
nR,j=0

NR,−j∑
nR,−j=0

ρ(NR,−j, nR,−j, t, FD,Reg)× ρ(NR,j, nR,j, t, FD,PIV )

×
∫
ξ

∫
ω

πfdt(NB,j +NF,j +NS,j + nR,j + nR,−j) dFξ dFω × 1{tendpatent,j < t ≤ tnR,j=NR,j
}

+

∫
ξ

∫
ω

πfdt(NB,j +NF,j +NS,j +NR,j +NR,−j) dFξ dFω × 1{t > tnR,j=NR,j
}.

which includes four parts: 1) the PIV exclusivity period; 2) when PIV exclusivity ends but
the existing secondary patent has not yet expired; 3) after the secondary patent has expired;
and 4) the mature market stage.

25Here, we define a successful PIV challenge when we observe the PIV challenger’s market entry before
patent expiration. In addition to winning litigation, generics can achieve such entry if the innovator does not
respond, if the case is settled out of court, etc.
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The value function of being a subsequent successful applicant V S
dt equals:

V S
dt(NB,j, NF,j, NS,j, NR,j, NR,−j, tend180,j, tendpatent,j, tnR,j=NR,j

) =

NS,j−1∑
nS=0

NR,−j∑
nR,−j=0

ρ(NR,−j, nR,−j, t, FD,Reg)× ρ(NS,j − 1, nS, t, FD,PIV )

×
∫
ξ

∫
ω

πfdt(NB,j +NF,j + nS + 1 + nR,−j) dFξ dFω × 1{tend180,j < t ≤ tendpatent,j}

+

NR,j∑
nR,j=0

NR,−j∑
nR,−j=0

ρ(NR,−j, nR,−j, t, FD,Reg)× ρ(NR,j, nR,j, t, FD,PIV )

×
∫
ξ

∫
ω

πfdt(NB,j +NF,j +NS,j + nR,j + nR,−j) dFξ dFω × 1{tendpatent,j < t ≤ tnR,j=NR,j
}

+

∫
ξ

∫
ω

πfdt(NB,j +NF,j +NS,j +NR,j +NR,−j) dFξ dFω × 1{t > tnR,j=NR,j
}.

which includes three parts: 1) PIV exclusivity ends while the secondary patents remain
active; 2) the secondary patents have expired; 3) the market has matured.

The value function of losing the lawsuit V Fail
fj is the same as the value function of

regular generic V R
fj ,

V Fail
fj (NB,j, NF,j, NS,j, NR,j, NR,−j, tallowed,j, tnR,j=NR,j

)

= V R
fj(NB,j, NF,j, NS,j, NR,j, NR,−j, tallowed,j, tnR,j=NR,j

).

Fixed costs. Similar to Starc and Wollmann (2025), we parameterize the fixed costs that
firm f pays to introduce ANDA fj at ingredient-dosage form j are:

θfj = θ0 + θ1stfj + θ2irfj + θ3PIVfj + ηj

where stfj is the number of strengths applied by firm f when submitting ANDA fj. irfj
indicates whether the ANDA fj uses an irregular dosage form. PIVfj is an indicator that
equals 1 if ANDA fj claims patent challenge. This PIVfj indicator captures additional
fixed costs associated with the PIV challenge, such as lawsuit fees and technology devel-
opment required to bypass or invalidate secondary patents. ηj represents an ingredient-
dosage form-specific fixed cost shock that is unobservable to econometricians but known
to firms at the time of entry. This shock is assumed to be symmetrically distributed and
independent of the ingredient-dosage form characteristics (i.e., the number of strengths,
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the delivery method, and the PIV status).
When making the entry decision for an ingredient-dosage form, each firm f forms a

rational expectation of the fixed cost θfj based on its information set Ifj:

θfj = E[θfj|Ifj] + νfj,

where νfj denotes each firm’s expectations error, which, by construction, has a zero condi-
tional mean E[νfj|Ifj] = 0.

We assume an ingredient-dosage form-specific disturbance, ηj , that is common to all
firms within ingredient-dosage form (i.e., market) j. The selection issue arises if markets
with a high number of generic entrants have systematically different unobserved cost dis-
turbances than those with few entrants.

While other specifications exist, they are less suitable for our context. One could, for
instance, assume a firm-specific disturbance, ηf . In this case, the selection issue arises if
firms that enter many markets have different cost draws than firms that enter few. How-
ever, it is more plausible that cost heterogeneity is driven by product characteristics rather
than firm-level attributes, as pharmaceutical firms typically specialize in a limited range
of drugs. Alternatively, one could assume a firm-market specific disturbance, ηfj . The
selection issue arises when entrants into market j have more favorable cost draws than
non-entrants (i.e., ηfj < ηf ′j). Addressing this type of selection, particularly with a zero-
mean assumption, is empirically challenging as it requires defining the set of all potential
entrants for every market or the set of all potential markets for each firm.

Given these considerations, the ηj specification is the most appropriate. It aligns with
industry realities and shifts the analytical focus from the identities of entrants to the number
of entrants per market, which provides a more tractable approach to addressing the selection
problem with moment inequalities that we detail in the next section.

The firm f compares the value function and expected fixed costs in ingredient-dosage
form j. Generic firm f makes a decision for ANDA fj by choosing the action with the
highest value from:

{V PIV
fj − E[θPIV

fj |Ifj], V
R
fj − E[θRfj|Ifj], 0} (5)

We assume entry decisions form a Nash equilibrium. All firms make simultaneous
decisions at t = 0 and commit to their future actions. Thus, we simplify the dynamic game
into a static one, ensuring that each player chooses the best response.
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4 Estimation

In this section, we present the estimation methods and estimators for our structural model.

4.1 Stage II: Demand

We utilize the market share inversion by Berry (1994), and the expression is as follows.

ln sdt − ln s0t = λm + λt+α ln pdt + β11{Brand}d + β2Npackdt

+ β31{FirstG}d + σ ln sd|g,t + ξdt (6)

where sd|g,t is the share conditional on group g.
Drug prices ln pdt and market shares sd|gt are endogenous. It is because ln pdt correlates

with the unobserved shock ξdt, and sd|g,t reflects an equilibrium outcome. Firms know the
shock ξdt when setting prices, which leads to biased ordinary least squares (OLS) estimators
for α and σ. We use the following instrumental variables: the number of competitors, the
number of branded drugs, the number of products offered by a firm in period t, and indicator
variables for therapeutic classes.

The estimation results are presented in Table 1. We find that σ̂ = 0.406, indicating
a medium correlation among drugs within a group. The negative estimate, α̂ = −1.103,
indicates that buyers are sensitive to higher prices. Buyers have a higher willingness to pay
for branded drugs, explaining the higher observed prices for these products. Drugs offered
in a greater number of package sizes achieve higher market shares. And the first generic
entrant enjoys a first-mover advantage by securing marketing channels and establishing
connections with wholesalers. Buyers also show inertia in their purchasing behavior toward
the first generic drug.

4.2 Stage II: Supply

From the FOC of profit maximization, we can recover the marginal cost as:

mcdt = pdt − (
∂sdt
∂pdt

)−1sdt (7)

where we recover ∂sdt
∂pdt

from the demand estimation. After recovering m̂cdt, we can estimate
the fixed effetcs γ̂m and γ̂t, and the distributions of ω, F̂ω from equation 1.
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Table 1: Demand estimates

Estimate SE
α -1.103*** 0.170
σ 0.406*** 0.0859
Brand 1.012*** 0.217
Npack 0.431*** 0.0902
First Generic 0.286*** 0.0559

FE ingredient Y Y
FE time Y Y

Observations 61 398 61 398
Standard errors are clustered at the drug-level.
* p<0.1, ** p<0.05, *** p<0.01

Using the demand estimates and the marginal costs, we can compute the expected prof-
its for a hypothetical market structure.

4.3 Stage I: Successful challenge probability

The expected value function for PIV generics relies on two probabilities: the probability
of being the first PIV challenger, denoted as PF , and the probability of prevailing in patent
litigation, denoted as PW . These probabilities generate three outcomes for a PIV ANDA
filer: first challenger and winner, subsequent challenger and winner, and unsuccessful liti-
gant. The probability PF is estimated using the sample mean of first-challenger status in the
dataset, by assuming that firms behave according to the equilibrium path. The probability
PW is estimated with a Logit model, which relates the probability of a successful challenge
to observable patent and firm characteristics for each ANDA.

We argue that a challenge’s success depends on both the number and the robustness of
patents listed by the innovator. While a larger number of patents may signal greater protec-
tion, it may also reflect the presence of weak or easily challengeable patents. Additionally,
we believe branded drug firms defend more aggressively when their patents have a longer
time left, as the stakes are higher. Moreover, we also allow the chance of a successful
challenge to vary by therapeutic class.

To quantify these factors, we first utilize patent data from the FDA’s Orange Book, and
then supplement this with information scraped from the FDA drug database, including sub-
mission dates of ANDAs, their targeted innovator products, and associated patents. Using
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these combined sources, we construct key variables, including the number of listed patents
and the remaining patent duration at the time of PIV ANDA submission.

Having constructed these variables, we next estimate the probability of a successful
PIV challenge using the following Logit specification.

PW = P (Y = 1 | X) =
eXβ

1 + eXβ
,

where Y = 1 indicates a successful challenge. The vector X includes the number of listed
patents, the remaining patent length, and controls for submission year and therapeutic class.

4.4 Stage I: Fixed costs

We derive moment inequalities from the necessary conditions of a simultaneous-move Nash
equilibrium to bound fixed costs. Specifically, if we observe that a PIV applicant f applies
ANDA fj, then:

V PIV
fj (NB,j, NPIV,j, NR,j) ≥ θPIV

fj , (8)

and if not, then26

V PIV
fj (NB,j, NPIV,j + 1, NR,j) < θPIV

fj . (9)

Similarly, if we observe that a regular applicant f applies ANDA fj, then

V R
fj(NB,j, NPIV,j, NR,j) ≥ θRfj, (10)

and if not, then
V R
fj(NB,j, NPIV,j, NR,j + 1) < θRfj. (11)

In addition, a PIV applicant has no incentive to deviate and file a regular application:

V PIV
fj (NB,j, NPIV,j, NR,j)− θPIV

fj ≥ V R
fj(NB,j, NPIV,j − 1, NR,j + 1)− θRfj, (12)

and conversely, a regular applicant has no incentive to deviate and file a PIV application:

V R
fj(NB,j, NPIV,j, NR,j)− θRfj ≥ V PIV

fj (NB,j, NPIV,j + 1, NR,j − 1)− θPIV
fj . (13)

26When calculating the counterfactual value functions V PIV
fj (NB,j , NPIV,j+1, NR,j), we take NPIV,j+1

as NF,j + 1 since most PIV applicants in our sample are first filers. For V R
fj(NB,j , NPIV,j , NR,j + 1), we

take NR,j + 1 as Ndf + 1.
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Inequalities (8)–(13) form the basis for estimation. However, they are not directly imple-
mentable due to the presence of unobserved fixed cost shocks ηj .27

To illustrate the selection problem, assume for simplicity that expectation errors are
absent and that θ0 = θ2 = θ3 = 0, so that θfj = θ1stfj + ηj . Inequalities (8)–(11) then
imply:

V PIV
fj (NB,j, NPIV,j + 1, NR,j)− ηj

stfj
< θ1 ≤

V PIV
fj′ (NB,j, NPIV,j, NR,j)− ηj′

stfj′

V R
fj(NB,j, NPIV,j, NR,j + 1)− ηj

stfj
< θ1 ≤

V R
fj′(NB,j, NPIV,j, NR,j)− ηj′

stfj′

(14)

where j represents an ingredient-dosage form that has few generic entries, while j′ has
many generic entries. Selection bias arises when the unobserved components ηj are incor-
rectly assumed to be zero across all ingredient-dosage forms ηj = ηj′ = 0. In general,
when an ingredient-dosage form j′ has many generic entries (conditional on observables
stfj, irfj and PIVfj), this suggests a relatively favorable cost draw, i.e., ηj′ is likely small
or even negative (from the left side of the distribution). Replacing this with zero would
over-sample positive ηj and result in a downward bias in the upper bound. Conversely, for
ingredient-dosage forms that have few entries, ηj is more likely to be large. Setting this to
zero over-samples negative ηj , leading to an upward bias in the lower bound.

To address this, we construct feasible moment inequalities based on (8)–(13), following
Starc and Wollmann (2025), and exploiting the assumptions that E[ηj] = 0 and that the dis-
tribution of η is symmetric. The idea is that although the conditional expectation of η varies
with observed entry in different ingredient-dosage forms, its unconditional expectation is
nonetheless mean zero.

The crucial step is determining which individual inequalities should be averaged. One
remark is that averaging within the same applicant type (PIV or regular) is generally un-
helpful, because the average disturbance conditional on entry remains unsolved. Instead,
we use entry and non-entry inequalities derived from observed and counterfactual value
functions. To fix the idea, let us write down the fundamental inequalities behind (8)–(13)
based on the actual and counterfactual value functions. To simplify the notation, we follow
the setup in the illustrative example and further assume θ1 = 0. We conduct the analysis
within each market j and for each generic type k ∈ {PIV,REG}. For a generic entrant

27While the expectational error νfj is also unobserved, it does not pose estimation difficulties. We omit it
in this section and elaborate in Appendix C.
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fE that enters j and forms the actual mature market structure (NB,j, NG,j), we have

V k
fE ,j(NB,j, NG,j)︸ ︷︷ ︸

actual entry

≥ ηj, (15a)

V k
fE ,j(NB,j, NG,j + 1)︸ ︷︷ ︸

counterfactual entry

< ηj, (15b)

where the inequality (15a) rationalizes that the observed mature market structure, in which
NG,j includes the firm fE under study, is sufficiently profitable to justify fE’s entry. In
contrast, inequality (15b) reflects a counterfactual scenario where we assume the market
cannot support the entry of one additional generic firm of the same type as fE , i.e., the
transition NG,j → NG,j +1 would not be profitable given the market-specific entry cost ηj .

By contrast, for a generic non-entrant fNE such that the actual mature market structure
(NB,j, NG,j) does not contain that firm fNE , we have

V k
fNE ,j(NB,j, NG,j + 1)︸ ︷︷ ︸

counterfactual for
actual non-entry

< ηj, (16a)

V k
fNE ,j(NB,j, NG,j)︸ ︷︷ ︸

counterfactual entry

≥ ηj, (16b)

where the inequality (16a) rationalizes why the firm fNE under study does not enter: the
actual mature market structure (NB,j, NG,j) is not sufficiently profitable to support its entry
(i.e., the counterfactual with one more generic, NG,j → NG,j + 1, is not viable). Inequal-
ity (16b) considers the counterfactual in which the mature market had one fewer generic,
(NB,j, NG,j − 1). In this case, it is assumed that entry by fNE would have been profitable
i.e., the transition NG,j − 1 → NG,j would occur, making fNE part of the observed market
structure (NB,j, NG,j).28 29

To average the disturbances ηj , we must combine inequalities of the same sign. Other-
wise, averaging would involve subtracting disturbances across observations. There are two

28If we modeled firm-market-specific shocks ηfj , the right-hand side of the counterfactual inequalities
(15b) and (16a) would contain ηfj for a hypothetical firm f . To ensure that the averaging inequalities (in-
volving these hypothetical firms) still yield a mean of zero, we would need additional assumptions on the
distribution of these disturbances (e.g., setting ηfj ≥ ηfE ,j in (15b) and ηfj ≤ ηfNE ,j in (16a)).

29Our focus is on the fundamental counterfactuals. For example, we do not consider cases where the
entrant fE would still find it profitable to enter even if the market contained only NG,j − 2 generics (i.e.,
forming NG,j − 1 upon entry), as this is a natural implication of inequality (15a).
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possible approaches: one combines inequalities (15b) and (16a), and the other combines
(15a) and (16b). We adopt the first approach. The reason is that not all markets j have
experienced at least one generic entry, making it impossible to construct inequality (16b)
for markets where only branded drugs are observed. In such cases, there is no meaning-
ful counterfactual in which one fewer generic exists, as the current number of generics is
already zero.

An important implication of inequality (14) is that non-entering firms help identify the
lower bound of the fixed cost parameter, while entrants inform the upper bound (under the
plausible (and testable) assumption that all covariates are non-negative and all parameters
are positive). Consequently, combining inequalities (15b) and (16a), which describe actual
and counterfactual scenarios where the mature market cannot support an additional entrant,
provides a natural basis for identifying the lower bound.

When constructing inequalities (15b) and (16a) from the type-specific (PIV or regu-
lar) conditions (8)–(11), we distinguish three types of markets. First, for markets j that
have experienced both PIV and regular generic entries, we treat each entrant as a firm
fE and compute the counterfactual value V k

fE ,j(NB,j, NG,j + 1), which enters inequal-
ity (15b). Second, for markets with only one type of generic entry (either PIV or reg-
ular), we again compute counterfactual values V k

fE ,j(NB,j, NG,j + 1) for observed en-
trants. In addition, we consider a hypothetical firm of the missing type and compute
the counterfactual value V k

fNE ,j(NB,j, NG,j + 1) to reflect why that type did not enter,
yielding inequality (16a). Third, for markets with no generic entry (i.e., only branded
drugs), we construct counterfactual values V k

fNE ,j(NB,j, NG,j + 1) for both hypothetical
PIV and regular applicants, which again enter through (16a). In summary, for each firm
d(f), whether observed to enter or not, we compute the counterfactual value function
V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = R}). Non-entering firms contribute

to moment (17) via inequality (16a), while entering firms do so through inequality (15b),
which we interpret as showing that the market could not profitably support an additional
entrant of the same type under current conditions.

These actual and counterfactual value functions allow us to construct three sets of mo-
ment conditions. The first two sets rely on (8)–(11), while the third uses the deviation
inequalities (12)–(13). Since we as econometricians do not observe the fixed cost shock
ηj , we use E[θfj|Ifj]. Below, we present the key ideas and moment conditions, with full
derivations provided in Appendix C.
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Moment for Lower Bound. As dicussed earlier, we collect inequalities (15b) and (16a)
to estimate the lower bound. Because not all firms (PIV or regular) enter every ingredient-
dosage form, for each j we can find at least one firm f that did not enter. Thus, for each j,
we can always construct one valid instance of inequalities (15b) and (16a) (using (9) for a
PIV entrant and (11) for a regular entrant). Averaging these across j pools exactly one ηj

per j, yielding a set of unselected cost shocks:

1

J

∑
j

1

µj

∑
d∈Dj

1

2

∑
k∈{PIV,R}

[
V k
d(f)j

(
NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = R}

)
− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j

]
× wd(f)j < 0,

(17)
where wd(f)j are non-negative weight functions including a constant, indicators for standard
(and non-standard) dosage forms, indicators for whether the drug is available in one, two,
or more than two strengths, and indicators for whether the drug involves a PIV applicant.
J is the number of unique ingredient-dosage form combinations, and µj is the number of
drugs associated with each j.

Moment for Upper Bound. Constructing upper bounds is more complicated because not
every ingredient-dosage form j has experienced at least one entrant (PIV or regular). This
prevents us from collecting inequalities (15a) and (16b) and applying (8) and (10) to every
j, making it impossible to pool a set of unselected shocks with mean zero. To address this,
we adopt a different approach that exploits the symmetry of the distribution of fixed cost
shocks ηj .

The key idea is to compare the average of moments for ingredient-dosage forms with
at least one entry against those with no entry. Under the assumption that the distribution of
ηj is symmetric around zero, which implies that the difference in the two sample moments
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cancels out the unobserved shocks. The resulting moment condition is:

1

JE

∑
j∈E

1

µj

∑
d∈Dj

∑
k∈{PIV,R}

[
1{Nk ≥ 1} × V k

d(f)j(NB,j, NPIV,j, NR,j)

1{NPIV,j ≥ 1}+ 1{NR,j ≥ 1}+ 1{NPIV,j = 0, NR,j = 0}

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j

]
× wd(f)j

− 1

J − JE

∑
j∈NE

1

µj

∑
d∈Dj

∑
k∈{PIV,R}

[
1

2
V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = PIV })

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j

]
× wd(f)j > 0,

(18)
where E is the set of ingredient-dosage forms with at least one entrant, and JE = |E|.
For the non-entry group NE, we calculate the average of the PIV and regular applicants’
counterfactual value functions in each j, weighted by a positive-valued function wd(f)j ,
following the approach in Starc and Wollmann (2025):

V +
j =

∑
d∈Dj

1

2

∑
k∈{PIV,R}

V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = PIV })× wd(f)j.

To define the set NE, we order j by their V +
j values and select the J−JE ingredient-dosage

forms with the smallest values.

Moment for entry costs related to PIV applications (parameter θ3). We use inequal-
ities (12) and (13) to construct moments that help identify our main parameter of interest,
θ3, which captures the incremental fixed cost associated with being a PIV applicant. Since
the fixed cost shock ηj is assumed to be independent of PIV status, these inequalities are
not subject to the selection problem. The assumption of symmetric distribution of η implies
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that the unobserved disturbances cancel out in the moment condition:

1

JE

∑
j∈E

1

µj

∑
d∈Dj

1

2

∑
k∈{PIV,R}

[
V k
d(f)j(NB,j, NPIV,j, NR,j)

− V −k
d(f)j

(
NB,j, NPIV,j + (−1)1{k=PIV }, NR,j + (−1)1{k=R})

+ (−1)1{k=PIV } · θ3

]
× wd(f)j ≥ 0,

(19)
where V −k denotes the counterfactual value if the firm had chosen the alternative applica-
tion type, and wd(f)j is a non-negative weight function as defined previously. In practice,
we divide this moment condition (19) into two moments by separately grouping observa-
tions of PIV and regular applicants, which respectively identify the upper and lower bounds
of θ3.

Inference. To construct confidence regions, we follow the moment selection and test in-
version approach of Andrews and Soares (2010). Specifically, we evaluate a four-dimensional
grid of candidate parameter vectors (θ0, θ1, θ2, θ3)

′ and invert the test statistic to obtain a
95% confidence region for the identified set Θ.

Table 2: Fixed Cost Estimates: 95% Confidence Interval

Parameter Estimates

Constant (θ0) [1e-6, 1.996]
Number of strengths (θ1) [0.879, 1.653]
1{irregular delivery} (θ2) [1e-6, 3.684]
1{PIV challenge} (θ3) [1.333, 2.896]

Observations 817 groups (3014 obs.)
Moments 18

Minimum fixed cost of entry 2.264
Average fixed cost of entry 4.086
Maximum fixed cost of entry 16.188

Notes: Fixed cost estimates are reported in millions of dollars. The bounds reported are 95%
confidence intervals. To calculate the minimum, mean, and maximum fixed costs across ingre-
dient–dosage form combinations, we set θ0, θ1, θ2, and θ3 equal to their respective midpoints.

Table 2 presents the 95% confidence sets for the fixed costs. The coefficient on the num-
ber of strengths, θ1, ranges from $0.9 million to $1.7 million, suggesting that expanding a
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product’s strength portfolio meaningfully raises development costs. The coefficient on the
irregular delivery indicator, θ2, reaches up to $3.7 million, suggesting substantial additional
costs for products with irregular delivery. The coefficient on the PIV challenge indicator,
θ3, lies between $1.3 million and $2.9 million, reflecting that firms incur higher costs to pur-
sue a PIV challenge compared with regular generics for a given ingredient–dosage form.
These extra costs include expenses for bypassing patents, administrative procedures, and
often most importantly, litigation.

The magnitudes align well with prior evidence. According to Parasrampuria et al.
(2021), the average fixed cost for regular generics is approximately $2.5 million, with liti-
gation costs around $1–$3 million, consistent with our estimates. In our sample, total fixed
costs range from $2.3 million to $16.2 million, with a mean of $4.1 million. For com-
parison, Starc and Wollmann (2025) estimate fixed costs between $1.4 million and $13.9
million, and Gottlieb (2016) finds that a generic application typically costs between $5 mil-
lion and $15 million. Overall, our estimates fall well within the range documented by the
literature.

5 Counterfactuals

In this section, we explore the role of exclusivity by back-of-the-envelope analysis and sim-
ulate the effects of varying exclusivity durations. Moreover, we assess alternative policies
to encourage PIV challenges.

5.1 Benefit from patent challenge

We first examine the costs and benefits of the exclusivity period. The first applicant to file
an ANDA can benefit from earlier market entry and a 180-day marketing exclusivity period.
This exclusivity provides an extended selling window and limited competition, enabling the
initial generic entrant to set higher prices and achieve greater profit margins. In our sample,
the average profit from 180-day exclusivity is estimated at around $5.7 million, and it could
be up to $93.2 million. Early entry also confers a first-mover advantage that can persist after
the exclusivity period. The average fixed cost for PIV generics is estimated at $6 million,
which is equivalent to around 6 years of regular generic profit of the same ingredient-dosage
form. In comparison, the average fixed cost for regular (non-PIV) generics is estimated at
$3.7 million, which is equivalent to around 4 years of regular generic profit. Comparing
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these values and fixed costs indicates that patent challenges are highly attractive, although
their appeal depends on the probability of a successful challenge, which may significantly
reduce the expected value.

5.2 Alternative policies

In this section, we simulate challenge rates under alternative policies, focusing on two key
dimensions that capture the incentives for filing patent challenges: exclusivity length and
fixed costs. To examine the role of exclusivity, we simulate a scenario without PIV exclu-
sivity (reflecting the current European regulatory framework) and three alternative regimes
that provide exclusivity periods of 1 year, 1.5 years, and 2 years. These are compared to
the current benchmark of 0.5-year (180-day) exclusivity. To study the effect of fixed costs,
we simulate arbitrary reductions in fixed costs of 2%, 4%, 6%, 8%, and 10%.

Figure 3: Expected value under different exclusivity regimes

Note: This figure shows the equilibrium value and its decomposition into exclusivity rent, business stealing,
and consumer surplus effects under various exclusivity regimes relative to 0.5-year exclusivity. The equilib-
rium, exclusivity rent effect, and business stealing effect are average values of PIV generics.
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Figure 3 shows the relative expected values of PIV generics under different exclusivity
regimes. Taking the current 0.5-year exclusivity as the benchmark, we compute expected
values in two scenarios: (i) hypothetically fixing the market structure at the 0.5-year regime
(blue bars) and hence shutting down drugs’ entry and exit, and (ii) allowing drugs’ entry
and exit (green bars). In the absence of exclusivity, PIV generics lose profits from the
most lucrative period, and the value of the challenge declines: the exclusivity rent effect is
10.5% less than the 0.5-year exclusivity benchmark. With longer exclusivity, the profitable
window extends, and the expected values of challenge increase substantially when entry is
restricted. Once entry is allowed, however, the picture changes: without exclusivity, fewer
generics challenge, and the market is less competitive: the business stealing effect increases
the value of PIV generics by 24.5 percentage points. In equilibrium, only the most prof-
itable drugs find it worthwhile to challenge, which raises the average value of PIV generics
by 14% compared with the 0.5-year exclusivity benchmark. For longer exclusivities, higher
profits attract more PIV entrants, intensifying competition, therefore, the business-stealing
effects are negative. The resulting business-stealing effect offsets the exclusivity rent effect,
resulting in lower expected values (red bars) compared to the fixed-market case (blue bars).
At shorter exclusivity lengths, the exclusivity rent effect dominates, whereas at longer du-
rations, competition increasingly erodes profits. In terms of consumer welfare, a 0.5-year
exclusivity benefits consumers by 35.3 percentage points compared to the no-exclusivity
regime. Longer exclusivity initially increases consumer welfare because it attracts more
entrants and intensifies competition. However, with 2-year exclusivity, the consumer sur-
plus decreases: the business-stealing effect stabilizes, and relatively high prices during the
extended exclusivity period reduce consumer surplus.

Figure 4 presents the corresponding challenge rates under different exclusivity regimes.
The observed challenge rate in the data is 16.01%, and our model closely predicts the
challenge rate at 14.37%. Firms gain significantly from the 0.5-year exclusivity period:
the 0.5-year exclusivity raises the challenge rate by approximately 4 percentage points
compared to no exclusivity, whereas longer exclusivity has only a modest effect. However,
for ingredient–dosage forms that were previously unchallenged, longer exclusivity strongly
stimulates entry: a 2-year exclusivity yields a challenge rate of 15.38%. This suggests
that firms do not have sufficient incentives to challenge in unchallenged markets under the
current 0.5-year exclusivity window. Extending exclusivity provides sufficient financial
incentives to make challenging profitable, thereby encouraging earlier entry.

Figure 5 presents results for varying fixed-cost regimes, with reductions of 2%, 4%,
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Figure 4: Challenge rate under different exclusivity regimes

6%, 8%, and 10%. Lower fixed costs are associated with increased PIV challenge rates, but
the effects are limited in magnitude. For example, a 10% reduction in fixed costs results
in a mean PIV challenge rate of 15.06%, which remains below the rate simulated under
1.5-year exclusivity. The impact of fixed-cost changes is more pronounced in previously
unchallenged markets. These groups, with no prior PIV entry, experience PIV entry at
a rate of 10.58% following a 10% reduction in fixed costs. In comparison, varying the
exclusivity period is both more effective and more feasible than altering fixed costs.

We further examine the exclusivity length required across therapeutic classes to achieve
certain challenge rates. Figure 6 reports challenge rates in previously unchallenged markets
by therapeutic class. Specifically, we categorize these products by class and calculate the
average challenge rate under various exclusivity regimes. A 1-year exclusivity period is
sufficient to induce challenges for blood products and cardiovascular drugs. Genitourinary
and hormone drugs require 1.5 years of exclusivity, while gastrointestinal and dermatolog-
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Figure 5: Challenge rate with different fixed costs

ical drugs respond only after 2 years. For antimicrobials, a 2-year exclusivity increases
the challenge rate to 20%. The findings indicate that it may be preferable to grant varying
exclusivity lengths depending on the therapeutic class.

6 Conclusion

Patent accumulation delays generic entry and sustains high drug prices. To mitigate this ef-
fect, the 180-day exclusivity provision was introduced, incentivizing generic firms to chal-
lenge weak secondary patents and enter the market earlier. Our data indicate that Paragraph
IV challenges lead to generic entry approximately seven years earlier than non-challenge
entry, though challenge rates remain low in general and vary across therapeutic classes.

To explore alternative policies to encourage PIV entry, we build a structural model in
which generic firms choose whether to enter a market, the type of entry (PIV or regular),
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Figure 6: Challenge rate across therapeutic class under different exclusivity regimes

and prices. Using moment inequalities, we estimate that the fixed costs of filing an ANDA
range from $2.264 million to $16.188 million, with PIV entry costing on average $2.115
million more than regular (non-PIV) entry. We then simulate alternative policies under
varying exclusivity regimes and fixed-cost structures. Our results show that 180-day ex-
clusivity substantially increases patent challenges. Extending exclusivity beyond 180 days
further encourages PIV entry in previously unchallenged markets. Reducing fixed costs has
a similar effect, though extending exclusivity proves more effective and practical. More-
over, we find that a single rule does not fit all: heterogeneous exclusivity lengths should be
applied across therapeutic classes.

This study suggests several promising avenues for future research. First, the timing of
patent challenges merits further investigation. Firms face a trade-off. Filing early increases
the chance of being the first challenger and securing exclusivity. However, delaying until
closer to patent expiration may deter other generic entrants and yield a less competitive
post-entry market. Additionally, the challenge costs may be lower due to a less aggressive
innovator. Second, this analysis does not consider the influence of authorized generics or
pay-for-delay settlements, both of which can substantially alter entry dynamics and com-
petitive outcomes.
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A Tables

A.1 A table on notations

Table 3: Notation definitions

Notation Definition

FDA Food and Drug Administration
ANDA Abbreviated New Drug Application for generic drugs
NDA New Drug Application for branded drugs
PIV Paragraph IV, which indicates patent challenge
NDC National Drug Code, the identifier for a drug
VA class Veterans Affairs class, a type of therapeutic class
m Ingredient: a market in price competition
g Nesting group in the demand model
d A product, defined at the ingredient-dosage form-strength-firm level
j Ingredient-dosage form: entry decision made in this level
fj An ANDA of firm f in ingredient-dosage form j
ξ Demand shock
ω Marginal cost shock
η Sunk cost shock
D duration of delay: time difference between application and launch
FD,Reg Distribution of delay for regular generics
FD,PIV Distribution of delay for PIV generics
NB,j Max number of NDAs for an ingredient-dosage form j
NF,j Max number of first PIV applicants for an ingredient-dosage form j
NS,j Max number of subsequent PIV applicants for an ingredient-dosage form j
NR,j Max number of regular ANDAs for an ingredient-dosage form j
NR,−j Max number of regular ANDAs for the same ingredient as j but other dosage forms
nF Number of first PIV applicants
nS Number of subsequent PIV applicants
nR,j Number of regular ANDAS for an ingredient-dosage form j
nR,−j Number of regular ANDAs for the same ingredient as j but other dosage forms
V R
fj Value function of a regular ANDA of firm f in ingredient-dosage form j

V PIV
fj Value function of a PIV ANDA of firm f in ingredient-dosage form j

V F
dt Value function of a PIV generic drug d being first applicant at period t

V S
dt Value function of a PIV generic drug d being subsequent applicant at period t

V Fail
fj Value function of a PIV ANDA fj failing challenge

δ Discount factor
θfj Fixed costs of an ANDA fj
PW Probability of successful PIV challenge, i.e., winning the lawsuit
PF Probability of being the first PIV applicant
ρ(a, b, t) Probability that b out of a players are in the market at period t
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A.2 Challenge successful probability

Table 4: Probability of success (Logit)

Estimate Std. Error
#Patent 0.0332∗∗ 0.0154
Remaining length -0.1422∗∗∗ 0.0507
Year FE Y Y
VA class FE Y Y
* p<0.1, ** p<0.05, *** p<0.01

A.3 Counterfactuals

Panel A: Values and PIV rates under different exclusivity regimes

No exclusivity 0.5-year exclusivity 1-year exclusivity 1.5-year exclusivity 2-year exclusivity

Value rate no entry 0.8950 1.0000 1.0014 1.0029 1.0041
Value rate with entry 1.1293 1.0000 1.0355 1.0069 1.0085
PIV rate observed / 0.1601 / / /
PIV rate simulated 0.1027 0.1437 0.1466 0.1511 0.1517
PIV entry 0.0084 0.0288 0.0769 0.1058 0.1538

Panel B: Values and PIV rates under different Fixed cost regimes

2% off 4% off 6% off 8% off 10% off

Mean FC PIV 5.7694 5.6516 5.5339 5.4161 5.2984
Mean FC Reg 3.6971 3.6217 3.5462 3.4708 3.3953
PIV rate simulated 0.1456 0.1460 0.1473 0.1474 0.1506
PIV entry 0.0113 0.0288 0.0673 0.0865 0.1058

Table 5: Summary statistic for different exclusivity regimes and fixed cost levels
Panel A notes: Table reports average values across exclusivity regimes. Value rates are relative to the 0.5-year exclusivity benchmark.
Panel B notes: Values are sample means. FC PIV and FC Reg are simulated Fixed costs, value refers to the simulated value with 0.5-year exclusivity,
and PIV rate is the proportion of PIV cases to the generic applications.
We simulate PIV entry in groups that do not have generics in the data under different regimes and report the proportion of groups with PIV entry in the
’PIV entry’ row.
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Therapeutic class 0.5-year exclusivity 1-year exclusivity 1.5-year exclusivity 2-year exclusivity
Antimicrobials 0 0 0.1 0.2
Blood Products 0 0.5 0.5 0.5
Cardiovascular 0 0.3333 0.3333 0.3333
Dermatological 0 0 0 0.1429
Gastrointestinal 0 0 0 0.4
Genitourinary 0 0.3333 0.6667 0.6667
Hormones 0 0.0625 0.125 0.125

Table 6: Summary statistics for exclusivity regimes by therapeutic class
Note: The rates are challenge rates in previously unchallenged groups under different exclusivity regimes.

B Probabilities of entry scenarios at period t

We have 33 periods (16.5 years) in the data, and all markets become mature after 33 periods.
Accordingly, we assume that the probability of maturity equals one after 33 periods. In
terms of the other three entry scenarios, during exclusivity, entry by subsequent PIVs, and
entry by regular generics, we compute the corresponding dynamic entry probabilities as
follows.

Table 7: Probability distribution over time

Delay P (t : during exclusivity) P (t : subsequent PIVs entering) P (t : regular generics entering)

0 1− (1− FD(0))
χPIV 0 0

1 (1− FD(0))
χPIV × (1− (1− FD(1))

χPIV ) (1− (1− FD(0))
χPIV )× P (infringe) (1− (1− FD(0))

χPIV )× P (invalid)
τ Πτ−1

t=0 (1− FD(t))
χPIV × (1− (1− FD(τ))

χPIV )
∑τ−1

t=1 P (t:during exclusivity)× P (infringe)
∑τ−1

t=1 P (t:during exclusivity)× P (invalid)

Notes: P (invalid) is an estimate from the data and P (infringe) = 1− P (invalid).

C Derivation of moment inequalities

Throughout the paper, we assume that agents form rational expectations based on their
information sets, so their subjective expectations E coincide with the empirical expectations
E. We further assume that our empirical estimates V̂ , π̂, F̂ξ, F̂ω, and F̂D are measured
without error relative to the beliefs used by agents at the decision-making stage, i.e., V , π,
Fξ, Fω, and FD.

Proposition 1. Moment inequalities (17) produce consistent lower bounds for the param-

eters of interest Θ = (θ0, θ1, θ2, θ3)
′.
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Proof. Consider the individual inequalities (9) and (11). For k ∈ {PIV,R}:

V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = R})− E[θd(f)j | Id(f)j] < 0,

where

E[θd(f)j|Id(f)j] = θd(f)j − νd(f)j = θ0 + θ1std(f)j + θ2ird(f)j + θ3PIVd(f)j + ηj − νd(f)j,

and νd(f)j ≡ θd(f)j −E[θd(f)j | Id(f)j] denotes the firm’s expectation error, which has mean
zero E[νd(f)j | Id(f)j] = 0 by construction.

Substituting into the inequality, we get:

V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = R})

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j − ηj + νd(f)j < 0.

Taking averages over all d(f)j pairs, isolating the fixed cost disturbances and expecta-
tions errors on one side and applying the law of large numbers, we have :

1

J

∑
j

1

µj

∑
d∈Dj

1

2

∑
k∈{PIV,R}

[
V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = R})

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j

]
<

1

J

∑
j

ηj −
1

J

∑
j

1

µj

∑
d∈Dj

1

2

∑
k∈{PIV,R}

νd(f)j
P−→ E[η]− E[ν] = 0,

(20)
where the last step follows from the law of total expectation: E[η] = E[E[η | I]] = 0 and
E[ν] = E[E[ν | I]] = 0.

Since the value functions V and the fixed cost covariates st, ir, and PIV are all known
to the firm at the decision-making stage, they are included in the firm’s information set
Id(f)j . Therefore, the population moment inequality (20) can be written as:

E
[
V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = R})

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j

∣∣∣ Id(f)j

]
< 0,

which is then translated into unconditional moments with weight wd(f)j , which are non-
negative functions of information variables such as st, ir and PIV that introduce addi-
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tional variation to identify the parameters of interest Θ. We obtain unconditional moment
inequalities that consistently estimate lower bounds on Θ:

1

J

∑
j

1

µj

∑
d∈Dj

1

2

∑
k∈{PIV,R}

[
V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = PIV })

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j

]
× wd(f)j < 0.

Proposition 2. Moment inequalities (18) produce consistent upper bounds for the param-

eters of interest Θ = (θ0, θ1, θ2, θ3)
′.

Proof. Consider the inequalities implied by (8)–(11). For k ∈ {PIV,R}, we have:

V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = R})− E

[
θd(f)j

∣∣∣Id(f)j, j has no entry
]
< 0,

V k
d(f)j(NB,j, NPIV,j, NR,j)− E

[
θd(f)j

∣∣∣Id(f)j, j has entry
]
≥ 0.

where

E[θd(f)j|Id(f)j] = θd(f)j − νd(f)j = θ0 + θ1std(f)j + θ2ird(f)j + θ3PIVd(f)j + ηj − νd(f)j,

and νd(f)j ≡ θd(f)j −E[θd(f)j | Id(f)j] denotes the firm’s expectation error, which has mean
zero E[νd(f)j | Id(f)j] = 0 by construction.

Substituting into the inequality, we get:

V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = R})

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j − ηj + νd(f)j < 0

for ingredient-dosage forms without any entry, and

V k
d(f)j(NB,j, NPIV,j, NR,j)

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j − ηj + νd(f)j ≥ 0

for ingredient-dosage forms having experienced entries.
Taking sample averages over ingredient-dosage forms with and without entry and sub-
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tracting the latter from the former yields:

1

JE

∑
j∈E

1

µj

∑
d∈Dj

∑
k∈{PIV,R}

[
1{Nk ≥ 1} × V k

d(f)j(NB,j, NPIV,j, NR,j)

1{NPIV,j ≥ 1}+ 1{NR,j ≥ 1}+ 1{NPIV,j = 0, NR,j = 0}

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j − ηj + νd(f)j

]

− 1

J − JE

∑
j∈NE

1

µj

∑
d∈Dj

∑
k∈{PIV,R}

[
V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = PIV })

2

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j − ηj + νd(f)j

]
> 0.

Isolating the fixed cost disturbances and expectations errors on one side, we have

1

JE

∑
j∈E

1

µj

∑
d∈Dj

∑
k∈{PIV,R}

[
1{Nk ≥ 1} × V k

d(f)j(NB,j, NPIV,j, NR,j)

1{NPIV,j ≥ 1}+ 1{NR,j ≥ 1}+ 1{NPIV,j = 0, NR,j = 0}

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j

]

− 1

J − JE

∑
j∈NE

1

µj

∑
d∈Dj

∑
k∈{PIV,R}

[
V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = PIV })

2

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j

]
>

1

JE

∑
j∈E

1

µj

∑
d∈Dj

∑
k∈{PIV,R}

(
ηj − νd(f)j

)
− 1

J − JE

∑
j∈NE

1

µj

∑
d∈Dj

∑
k∈{PIV,R}

(
ηj − νd(f)j

)
.

Now suppose the entry share converges, i.e., JE/J
P−→ q ∈ (0, 1). Applying the law of

large numbers, we have

1

JE

∑
j∈E

1

µj

∑
d∈Dj

∑
k∈{PIV,R}

(
ηj − νd(f)j

)
− 1

J − JE

∑
j∈NE

1

µj

∑
d∈Dj

∑
k∈{PIV,R}

(
ηj − νd(f)j

)
P−→ E[η|η < F−1(q)]− E[η|η > F−1(1− q)]−

(
E[ν]− E[ν]

)
= 0,

where F−1(q) is the asymptotic entry threshold, E[η|η < F−1(q)] and E[η|η > F−1(1−q)]

are equidistant from zero following the symmetry of the distribution F of η, which leads
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to E[η|η < F−1(q)]− E[η|η > F−1(1− q)] = 0. Besides, ν is independent of η and hence
E[ν|η < F−1(q)] = E[ν] = E[ν|η > F−1(1 − q)]. We apply the law of total expectations
to obtain the unconditional mean E[ν] = E

[
E[ν|I]

]
= 0. Finally, we obtain

1

JE

∑
j∈E

1

µj

∑
d∈Dj

∑
k∈{PIV,R}

[
1{Nk ≥ 1} × V k

d(f)j(NB,j, NPIV,j, NR,j)

1{NPIV,j ≥ 1}+ 1{NR,j ≥ 1}+ 1{NPIV,j = 0, NR,j = 0}

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j

]

− 1

J − JE

∑
j∈NE

1

µj

∑
d∈Dj

∑
k∈{PIV,R}

[
V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = PIV })

2

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j

]
> 0.

(21)
Since the value functions V and the fixed cost covariates st, ir, and PIV are all known

to the firm at the decision-making stage, they are included in the firm’s information set
Id(f)j . Therefore, the population moment inequality (21) can be written as:

E
[
V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = R})

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j

∣∣∣Id(f)j, j has entry
]

−E
[
V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = R})

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j

∣∣∣Id(f)j, j has no entry
]
> 0,

which is then translated into unconditional moments with weight wd(f)j , which are non-
negative functions of information variables such as st, ir and PIV that introduce addi-
tional variation to identify the parameters of interest Θ. We obtain unconditional moment

43



inequalities that consistently estimate upper bounds on Θ:

1

JE

∑
j∈E

1

µj

∑
d∈Dj

∑
k∈{PIV,R}

[
1{Nk ≥ 1} × V k

d(f)j(NB,j, NPIV,j, NR,j)

1{NPIV,j ≥ 1}+ 1{NR,j ≥ 1}+ 1{NPIV,j = 0, NR,j = 0}

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j

]
× wd(f)j

− 1

J − JE

∑
j∈NE

1

µj

∑
d∈Dj

∑
k∈{PIV,R}

[
V k
d(f)j(NB,j, NPIV,j + 1{k = PIV }, NR,j + 1{k = PIV })

2

− θ0 − θ1std(f)j − θ2ird(f)j − θ3PIVd(f)j

]
× wd(f)j > 0.

Proposition 3. Moment inequalities (19) produce consistent bounds for the parameter θ3
associated with the fixed costs generated by PIV challenges.

Proof. Consider the individual inequalities (12) and (13). For firms entering as PIV appli-
cants:

V PIV
d(f)j (NB,j, NPIV,j, NR,j)− V R

d(f)j(NB,j, NPIV,j − 1, NR,j + 1)− θ3 ≥ 0,

and for firms entering as regular applicants:

V R
d(f)j(NB,j, NPIV,j, NR,j)− V PIV

d(f)j (NB,j, NPIV,j + 1, NR,j − 1) + θ3 ≥ 0,

where we exploit the independence of the disturbance η and the applicant status PIV and
the fact that

E[θd(f)j|Id(f)j] = θd(f)j − νd(f)j = θ0 + θ1std(f)j + θ2ird(f)j + θ3PIVd(f)j + ηj − νd(f)j,

and νd(f)j ≡ θd(f)j −E[θd(f)j | Id(f)j] denotes the firm’s expectation error, which has mean
zero E[νd(f)j | Id(f)j] = 0 by construction.

Taking the average of all d(f)j individual inequalities (with j having experienced an
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entry), we have

1

JE

∑
j∈E

1

µj

∑
d∈Dj

1

2

∑
k∈{PIV,R}

[
V k
d(f)j

(
NB,j, NPIV,j, NR,j)

− V −k
d(f)j(NB,j, NPIV,j + (−1)1{k=PIV }, NR,j + (−1)1{k=R}

)
+ (−1)1{k=PIV }θ3

]
≥ 0.

(22)
Since the value functions V and the fixed cost covariates st, ir, and PIV are all known

to the firm at the decision-making stage, they are included in the firm’s information set
Id(f)j . Therefore, the population moment inequality (22) can be written as:

E

[
V k
d(f)j

(
NB,j, NPIV,j, NR,j)− V −k

d(f)j(NB,j, NPIV,j + (−1)1{k=PIV }, NR,j + (−1)1{k=R}
)

+ (−1)1{k=PIV }θ3

∣∣∣∣∣Id(f)j

]
≥ 0,

which is then translated into unconditional moments with weight wd(f)j , which are non-
negative functions of information variables such as st, ir and PIV that introduce additional
variation and consistently estimate θ3:

1

JE

∑
j∈E

∑
j

1

µj

∑
d∈Dj

1

2

∑
k∈{PIV,R}

[
V k
d(f)j

(
NB,j, NPIV,j, NR,j)

− V −k
d(f)j(NB,j, NPIV,j + (−1)1{k=PIV }, NR,j + (−1)1{k=R}

)
+ (−1)1{k=PIV }θ3

]
× wd(f)j ≥ 0.

D Confidence intervals of fixed costs

In this section, we illustrate the shapes of the estimated identified set. We have four param-
eters (θ0, θ1, θ2, θ3), and we display three at a time.
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Figure 7: 3D polyhedron projections.

(a) Projection on (θ0, θ1, θ2) (b) Projection on (θ0, θ1, θ3)

(c) Projection on (θ0, θ2, θ3) (d) Projection on (θ1, θ2, θ3)
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